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The prevalence of obesity in children and adolescents worldwide
has quadrupled since 1975 and is a key predictor of obesity later in
life. Previous work has consistently observed relationships be-
tween macroscale measures of reward-related brain regions (e.g.,
the nucleus accumbens [NAcc]) and unhealthy eating behaviors
and outcomes; however, the mechanisms underlying these associ-
ations remain unclear. Recent work has highlighted a potential
role of neuroinflammation in the NAcc in animal models of diet-
induced obesity. Here, we leverage a diffusion MRI technique, re-
striction spectrum imaging, to probe the microstructure (cellular
density) of subcortical brain regions. More specifically, we test the
hypothesis that the cell density of reward-related regions is asso-
ciated with obesity-related metrics and early weight gain. In a
large cohort of nine- and ten-year-olds enrolled in the Adolescent
Brain Cognitive Development (ABCD) study, we demonstrate that
cellular density in the NAcc is related to individual differences in
waist circumference at baseline and is predictive of increases in
waist circumference after 1 y. These findings suggest a neurobio-
logical mechanism for pediatric obesity consistent with rodent
work showing that high saturated fat diets increase gliosis and
neuroinflammation in reward-related brain regions, which in turn
lead to further unhealthy eating and obesity.

nucleus accumbens | pediatric obesity | brain development | diffusion
MRI | restriction spectrum imaging

The global prevalence of overweight and obesity among youth
has risen from 4% in 1975 to over 18% (1) and affects ∼35%

of children and adolescents within the United States (2). Obesity
is associated with negative consequences on an individual’s
mental health (3–5), physical health (6–8), and on mortality rates
(1). Children and adolescents with obesity have more than a
fivefold likelihood of becoming obese adults (9) and are likely to
have a more substantial obesity-related disease burden (10).
Obesity is defined by an excessive amount of fat accumulation and
has traditionally been quantified using body mass index (BMI)
(11) or BMI scores adjusted for age and sex in children (12).
However, BMI differences in thinner individuals are largely at-
tributable to differences in fat-free mass (13), and, conversely,
BMI has been suggested to be a poor indicator of severe adiposity
(14–16). Recent guidelines have suggested that waist circumfer-
ence may be a better estimate of visceral adiposity in children
within a normal BMI range (e.g., <85% percentile) (17, 18).
Consistent with this, waist circumference has been shown to esti-
mate body fat more accurately than BMI (19) and waist-to-hip
ratio (WHR) (20). Further, studies have shown waist circumference
to outperform BMI in predicting fat gain (21) and obesity-related
health risks in children (22, 23), which may be more informative for
understanding susceptibility for future health outcomes, such as
subclinical inflammation, metabolic dysfunction, and cardiovascular
disease (24, 25). Despite the long-term costs and consequences
associated with childhood obesity, the neurobiological mechanisms
that underlie early weight gain remain unclear.

Previous work has implicated the brain’s mesolimbic dopami-
nergic system—in particular, the nucleus accumbens (NAcc)—in
promoting unhealthy eating and other reward-motivated behaviors
(26–28). For example, in adults, individual differences in NAcc
blood oxygen level-dependent (BOLD) responses to food cues have
been positively associated with ad libitum snack consumption (29),
weight gain (30), diet failure (31), and BMI (32). Not only have
similar associations been observed in children and adolescents (33,
34), but the role of this circuitry may disproportionately affect
susceptibility to unhealthy behaviors in youth. Regional and circuit-
based changes involving the NAcc appear to precede the matura-
tion of control-related prefrontal circuitry during development (35),
which may lead to an overreliance on reward circuitry in driving
behavior (36). This imbalance may contribute to and enhance vul-
nerability for developing unhealthy eating behaviors early in life,
thereby increasing risk for obesity during adolescence as well as
during adulthood.
Beyond correlational support for associations between obesity-

related measures (e.g., BMI, waist circumference) and brain struc-
ture and function, a greater understanding of the cytoarchitecture in
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key regions within the developing mesolimbic system may yield
novel insight into the mechanisms underlying disproportionate
weight gain in youth. Recent developments in diffusion magnetic
resonance imaging (dMRI) methodology afford the opportunity to
probe the tissue microstructure of deep gray nuclei by providing
metrics that directly relate to cell and neurite density. Restriction
spectrum imaging (RSI) (37, 38) separates the diffusion-weighted
MRI signal into distinct components originating in intracellular and
extracellular water, which respectively correspond to restricted and
hindered diffusion (38) (Fig. 1). This distinction can be used to
estimate the degree of cellularity in specific brain structures. For
example, a greater proportion of restricted diffusion—along with a
parallel decrease in hindered diffusion—is thought to reflect greater
tissue cellularity. By approximating the cellular density of specific
tissue types, RSI provides an avenue for investigating longitudinal
changes in microstructural properties in the developing brain.
Here, we leverage this recent technological advancement to

examine the relationship between obesity and subcortical tissue
properties in children. More specifically, we evaluated whether
NAcc microstructure reflects individual differences in waist cir-
cumference in a large cohort of nine- and ten-year-olds (n >
11,000) enrolled in the Adolescent Brain Cognitive Develop-
ment (ABCD) study (39). To further test the possibility that
subcortical microstructure is related to early weight gain, we
additionally examined whether NAcc cell density at baseline was
associated with longitudinal changes in waist circumference after
1 y. We hypothesized that cellularity within the NAcc would not
only relate to individual differences in waist circumference but
would also prospectively predict increases in waist circumference
1 y later. We provide evidence suggesting that differences in the
microstructure of reward-related structures may underlie pedi-
atric obesity and childhood weight gain and propose a potential
role of neuroinflammation in mediating the relationship between
diet and subsequent weight gain.

Results
A total of 5,790 participants met inclusion criteria (Methods) at
baseline. Diffusion data passed quality control for 5,366 participants.

Of the 2,212 participants with 1-y follow-up data (ABCD 2.0.1) who
met inclusion criteria, diffusion data for 2,133 passed quality control.
The demographics of participants included at baseline and year 1 are
shown in Table 1.

Baseline Waist Circumference. Mean waist circumference at base-
line (n = 5,366) was 66.8 cm (SD = 10.4 cm). RSI measures of
cellularity within the NAcc were related to waist circumference
(P = 4.3 × 10−58; 95% CI: [119, 151 cm]) (Table 2), confirming
our a priori hypothesis. More specifically, greater baseline waist
circumference was associated with increases in the restricted
isotropic component and decreases in the hindered isotropic
component within the NAcc (P = 4.5 × 10−19; 95% CI:
[−154, −100 cm]) (Table 3). These results remained the same
when considering BMI instead of waist circumference (SI Ap-
pendix, Tables S1 and S2), as well as BMI z-score and BMI
percentile (SI Appendix, Tables S5 and S6), suggesting that this
effect was not specific to either anthropometric measurement.
Further, these results were consistent in a uniform subset of
participants that were prepubescent (Tanner stage 1) at baseline
(SI Appendix, Table S3) as well as within a smaller subset of
participants that were still prepubescent at follow-up (SI Ap-
pendix, Table S4).
An exploratory analysis was performed to test for overall as-

sociations between cell density in subcortical structures and obe-
sity, correcting for multiple comparisons. Cell density in several
subcortical regions was associated with baseline waist circumfer-
ence in addition to the NAcc (Table 2). All regions demonstrated
a significant association between waist circumference and re-
stricted diffusion (P < 0.05), but only the caudate (P = 2.7 × 10−13;
95% CI: [−130, −77 cm]), putamen (P = 1.3 × 10−12; 95%
CI: [−124, −72 cm]), and pallidum (P = 3.7 × 10−17, 95%
CI: [−43, −27]) demonstrated a significant negative association
with hindered diffusion. Considering both the increased intracellular
(restricted) diffusion and decreased extracellular (hindered) dif-
fusion together, these findings suggest greater cellularity in the
caudate, putamen, and pallidum in individuals with greater waist
circumference. Despite these significant associations, the NAcc

Fig. 1. RSI schematic. Intracellular water diffusion within neurons (orange) and surrounding glial cells (gray) is restricted whereas extracellular water dif-
fusion (teal) is hindered. The proportion of restricted diffusion is inversely related to hindered diffusion whereby greater cell density increases the restricted
fraction (Bottom) relative to the hindered fraction (Top).
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remained most strongly associated with waist circumference
(Fig. 2) and BMI (SI Appendix).

One-Year Change in Waist Circumference. Participants (n = 2,133)
returned after 1 y for a follow-up visit (mean = 1.03 y, SD = 0.10 y).
Mean waist circumference at 1-y follow-up was 69.8 cm (SD =
11.0 cm), and the mean within-subject change was 2.76 cm (SD =
6.33 cm). Change in waist circumference was associated with cell
density in the NAcc, such that an increase in waist circumference

was associated with an increase in the restricted component (P =
0.001, 95% CI: [16, 52 cm]) and a decrease in the hindered
component (P = 0.006, 95% CI: [−64, −17 cm]) (Fig. 3). Results
were consistent whether or not baseline waist circumference was
accounted for in the regression model.
By contrast, an exploratory analysis revealed that no other

subcortical regions demonstrated a significant relationship be-
tween change in waist circumference and cellularity. Although
change in waist circumference was positively associated with the
isotropic restricted signal fraction in the caudate and ventral
diencephalon (P < 0.05) (Table 2), no regions showed a signif-
icant decrease in the isotropic hindered signal fraction (Table 3).
These findings remained the same when considering BMI in-
stead of waist circumference, such that estimates of increased
cellularity within the NAcc—but no other subcortical regions—
were significantly associated with increases in BMI after 1 y (SI
Appendix, Tables S1 and S2) as well as increases in BMI z-score
(SI Appendix, Table S5) and BMI percentile (SI Appendix, Table
S6). Results were also consistent within a uniform subset of in-
dividuals that were prepubescent at baseline (SI Appendix, Table
S3) and in individuals that were still prepubescent at follow-up
(SI Appendix, Table S4).
A post hoc voxelwise analysis of deep gray matter further

demonstrated the spatial specificity of our findings. Consistent
with the region of interest (ROI) analysis, voxelwise models revealed
the most robust relationship between restricted diffusion and
change in waist circumference in the NAcc (Fig. 4).

Discussion
The current study observed significant associations between
measures of obesity and brain microstructure in a large cohort of
9- and 10-y-old children, particularly within the NAcc. Individual
differences in waist circumference were related to RSI estimates
of tissue cellularity in several subcortical regions—including the
NAcc, caudate, putamen, and pallidum. Among all regions,
NAcc cellularity was most strongly related to increases in waist
circumference. Moreover, increased waist circumference after
1 y was significantly associated with increased NAcc cell density,
such that only this subcortical structure showed both a higher
proportion of restricted diffusion and lower proportion of hin-
dered diffusion. Similar effects were observed when evaluating
associations with BMI, suggesting that the effects observed in the
NAcc were not specific to waist circumference and appear to
generalize to other anthropometric measures of obesity. Taken
together, these findings provide initial support for a role of mi-
crostructural changes in the mechanisms underlying childhood
obesity and susceptibility to early weight gain.
One potential explanation for the observed association be-

tween waist circumference and NAcc cellularity is that micro-
structural changes in reward-related regions of the brain are

Table 1. Subject demographics for analysis of baseline and one-
year follow-up

Baseline Year 1

n 5,366 2,133
Waist circumference, cm
Baseline 66.79 ± 10.37 67.01 ± 10.12
Year 1 — 69.76 ± 11.04

BMI, kg/m2

Baseline 18.47 ± 3.92 18.24 ± 3.62
Year 1 — 19.19 ± 4.13

Interview age, y
Baseline 9.95 ± 0.62 10.05 ± 0.61
Year 1 — 11.07 ± 0.63

Sex
Male 2,788 (52.0%) 1,124 (52.7%)
Female 2,578 (48.0%) 1,009 (47.3%)

Race/ethnicity
White 3,221 (60.0%) 1,438 (67.4%)
Black 685 (12.8%) 179 (8.4%)
Hispanic 919 (17.1%) 329 (15.4%)
Asian 67 (1.2%) 23 (1.1%)
Other 474 (8.8%) 164 (7.7%)

Higher education
No HS diploma 203 (3.8%) 58 (2.7%)
HS diploma/GED 471 (8.8%) 133 (6.2%)
Some college 1,563 (29.1%) 625 (29.3%)
Bachelor 1,700 (31.7%) 747 (35.0%)
Post graduate degree 1,429 (26.6%) 570 (26.7%)

Household income
Less than $50,000 1,367 (25.5%) 429 (20.1%)
Between $50,000 and $100,000 1,597 (29.8%) 699 (32.8%)
More than $100,000 2,402 (44.8%) 1,005 (47.1%)

Married
Yes 3,888 (72.5%) 1,623 (76.1%)
No 1,478 (27.5%) 510 (23.9%)

Baseline ICV, L 1.56 ± 0.14 1.57 ± 0.14

Continuous variables listed as mean ± SD. GED, General Educational De-
velopment; HS, high school; ICV, intracranial volume.

Table 2. Associations between restricted isotropic component fraction and waist circumference
at baseline (n = 5,338), and with 1-y change in waist circumference (n = 2,121)

Baseline waist circumference 1-y change in waist circumference

Coef SE t-value P value Coef SE t-value P value

Thalamus 61.7 9.8 6.29 2.8 × 10−9 *** 19.7 10.1 1.96 0.406
Caudate 123.8 10.2 12.17 9.9 × 10−33 *** 33.5 10.6 3.15 0.013 *
Putamen 130.8 11.3 11.55 1.4 × 10−29 *** 29.2 12.2 2.38 0.137
Pallidum 52.1 5.0 10.37 4.8 × 10−24 *** 5.3 5.3 1.00 1.000
Hippocampus 31.9 10.6 3.01 0.021 * 10.0 10.9 0.92 1.000
Amygdala 38.8 10.3 3.76 0.001 ** 4.6 11.0 0.41 1.000
Nucleus accumbens 135.3 8.2 16.40 4.3 × 10−58 *** 33.9 9.0 3.77 0.001 **
Ventral diencephalon 82.8 8.9 9.27 2.1 × 10−19 *** 26.3 9.5 2.77 0.046 *

All P values Bonferroni corrected for multiple comparisons: *P < 0.05; **P < 0.01; ***P < 1.0 × 10−6. Coef,
coefficient.
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caused by an overconsumption of unhealthy foods. A substantial
body of work has documented the role of dopaminergic pathways
in motivating eating behavior, which may provide insight into the
link between weight change and cellular-level differences in the
NAcc. For example, previous studies have demonstrated a de-
crease in striatal dopamine availability in obese adults (40),
suggested to occur as a result of frequent overeating and chronic
stimulation. Similar to reward deficiency models of addiction
(41), a down-regulation of dopamine may lead individuals to
overeat in an attempt to compensate for this deficit. Indeed, de-
creased mesolimbic dopaminergic activity has been associated
with increased consumption of high-fat foods in rodents (42, 43) as
well as with emotion-induced eating in humans (44). Consistent
with this model, the incentive-sensitization theory of addiction
posits that motivational salience, or “wanting,” increases dispro-
portionately with food “liking,” or the hedonic pleasure associated
with consumption—which may even decrease over time (45, 46).
Whereas “liking” is considered to primarily depend on the opioid
and endocannabinoid systems (47), “wanting” is more closely tied
to mesolimbic dopamine pathways (48). Thus, dopaminergic cir-
cuitry not only motivates eating behavior but can also be
modulated by overconsumption.
Energy consumption also influences physiological signals through-

out the brain (49). Homeostatic signals, such as leptin, have been
shown to regulate dopaminergic signaling and responses to food
cues in the striatum (50, 51). For example, dopamine release in
the dorsal striatum is dampened after consumption of a meal (52).
In addition to striatal pathways, the ventral pallidum—which has
been suggested to play a key role in both the hedonic (53, 54) and
motivational aspects of food reward (55, 56)—is sensitive to hy-
pothalamic satiety signaling (57, 58) and physiological states (59).
Given the greater cell density of these regions associated with food
reward and consumption in children with higher waist circumfer-
ence, it’s interesting to consider the possibility that the micro-
structural differences observed here are related to diet-induced
changes in the developing brain. However, the estimated cellu-
larity of subcortical regions aside from the NAcc were not related
to weight gain after 1 y, and thus the directionality of these
changes in the brain versus in the body remains an open question.
Under this framework, an excess of highly palatable food

consumption may lead to chronic stimulation of regions of the
brain associated with food reward and eating behavior and ulti-
mately lead to increased cellularity within these regions. This
idea is supported by the current observation that overweight
children demonstrated greater cellularity in regions that have
been closely associated with various aspects of food reward
motivation and eating behavior—including the ventral (NAcc),
dorsal striatum (caudate, putamen), and pallidum.
Based on previous work in animal models of diet-induced obe-

sity, an alternative—but complementary—explanation for these

findings may be related to local inflammation of the NAcc. An
increase in glial cells (e.g., astrocytes, microglia) can indicate a
reaction to circulating proinflammatory signals in the brain (e.g.,
cytokines) and may also mediate neuroinflammatory responses
(60). This process of reactive gliosis has been examined in animal
models of obesity by measuring increases in glial fibrillary acidic
proteins (GFAPs). For example, there has been substantial evi-
dence demonstrating increased inflammatory markers within the
hypothalamus related to diet-induced obesity in rodents (60–64),
including changes within hypothalamic glial cells (65, 66) that ul-
timately interfere with the regulation of food intake (64). Recent
work in juvenile rats has extended these findings by demonstrating
reactive gliosis within the NAcc induced by a high-calorie diet (67,
68), which has been more specifically linked to the consumption of
saturated fats in adult mice (69). Consumption of a diet high in
saturated fats not only increased proinflammatory signals in the
NAcc but was also associated with compulsive sucrose seeking in
mice (69), suggesting that a diet high in saturated fat may trigger
neuroinflammation prior to, or independent of, weight gain and
may induce high caloric food-seeking behaviors. Thus, diet-induced
gliosis implicates a local inflammatory reaction both resulting from
and contributing to excess consumption of unhealthy foods, which
may explain the observed association between NAcc cellularity and
weight gain.
Although animal models provide strong evidence for the

presence of gliosis in response to diet-related inflammation,
examining this process in vivo has proven to be more challenging
in the human brain. Recent efforts to translate animal models of
neuroinflammation to noninvasive human neuroimaging have
increased (70, 71) but have largely focused on clinical targets
using molecular imaging (72). Diffusion RSI analysis (38) pro-
vides unique, noninvasive insight into tissue microstructure that

Table 3. Associations between hindered isotropic component fraction and waist circumference
at baseline (n = 5,338), and with 1-y change in waist circumference (n = 2,121)

Baseline waist circumference
1-year change in waist

circumference

Coef SE t-value P value Coef SE t-value P value

Thalamus 13.1 7.9 1.65 0.791 −8.3 7.9 −1.06 1.000
Caudate −103.9 13.7 −7.60 2.7 × 10−13 *** −29.3 12.0 −2.45 0.116
Putamen −98.8 13.4 −7.39 1.3 × 10−12 *** −27.6 13.0 −2.11 0.276
Pallidum −35.0 4.0 −8.69 3.7 × 10−17 *** −2.5 4.2 −0.60 1.000
Hippocampus 7.3 15.1 0.49 1.000 −1.4 13.3 −0.10 1.000
Amygdala 16.3 20.2 0.80 1.000 9.4 20.5 0.46 1.000
Nucleus accumbens −127.1 13.8 −9.19 4.5 × 10−19 *** −40.5 11.9 −3.39 0.006 **
Ventral diencephalon −15.8 7.0 −2.26 0.193 −12.6 7.3 −1.73 0.672

All P values Bonferroni corrected for multiple comparisons: *P < 0.05; **P < 0.01; ***P < 1.0 × 10−6.

Fig. 2. Association between RSI-based restricted component and baseline
waist circumference (n = 5,214). Imaging metrics were normalized to have
unit SD. Error bars represent 95% CIs.
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is sensitive to—although not necessarily specific to—cell density
and may offer a valuable avenue for future translational studies
on neuroinflammation.
A third interpretation based on both human and animal lit-

erature is that an unhealthy diet both increases inflammatory
signaling as well as decreases dopaminergic signaling and that
the combination of these processes contributes to a feed-forward
cycle of unhealthy eating and weight gain. Previous work has
demonstrated that inflammatory cytokines dampen both striatal
dopamine availability (73) and striatal activity during a reward-
processing task (74, 75), with respective decreases commensurate
with behavioral differences in anhedonia and motivation. Thus,
the presence of inflammatory signals in the brain may lead to
decreases in dopamine, which may, in turn, perpetuate over-
consumption and further inflammation. This cyclical framework
is consistent with animal literature demonstrating associations
between a high saturated fat diet and decreased dopamine
signaling—independent of body weight (43), as well as with re-
active gliosis, increased depressive symptoms (akin to anhedonia),
and compulsive sucrose seeking (69). The current findings support
the possibility that a high saturated fat diet leads to local inflam-
mation of the NAcc and increased glial cell density, which may
perpetuate the continued consumption of palatable foods and
subsequent weight gain (Fig. 5).
An open question is what factors contribute to the initial

consumption that drives subsequent changes in the brain and
behavior. Children and adolescents may be at a heightened risk
for developing obesity for a variety of reasons. For example, a
shift in the balance between developing mesolimbic (e.g., NAcc)
and mesocortical circuitry (e.g., prefrontal cortex [PFC]) during
adolescence has been suggested to play a role in increasing risk-
taking behaviors (76–78), including establishing unhealthy eating
habits. Moreover, adolescence is a primary critical period for the

development of obesity in childhood (79), in large part due to
hormonal changes. In addition, genetics plays a key role in brain
development (80) and in determining an individual’s striatal
dopamine availability (81). One hypothesis suggests that children
genetically at risk for obesity show an initial hypersensitivity to
palatable food cues which may increase their susceptibility to
overeat, and ultimately produce a blunted striatal response by
decreasing dopamine signaling (82, 83). This hypothesis is con-
sistent with studies demonstrating heightened striatal sensitivity
to food cues in children genetically at-risk for obesity (33), as
well as an association between weight gain and blunted striatal
responses to food in adults with genetically dampened dopamine
signaling (84).
Our findings present a first step toward uncovering the mi-

crostructural properties within reward circuitry that promote
early weight gain and obesity in children. However, it will be
important to consider developmental changes in microstructure
as children progress through adolescence. The current analysis
provides evidence for predicting longitudinal weight gain based
on RSI measurements at baseline, but the extent to which this
association changes over the course of development remains an
open question. One possibility is that the cellularity of the NAcc
measured at specific developmental periods differentially pre-
dicts weight gain (e.g., during childhood but not adulthood). In
addition to temporal specificity, it will be interesting to assess the
spatial specificity of this predictive relationship. The current
analysis examined RSI estimates within the subcortex, but fur-
ther work is needed to assess potential relationships with cortical
estimates of RSI across development. Prefrontal cortical (PFC)
circuitry develops during adolescence, subsequent to mesostriatal
circuitry (76, 77), and plays a key role in controlling reward-related
activity and impulsive behavior (78). The developmental shift in
the balance between these circuits may parallel the strength of
these predictive relationships, such that cellularity in the
NAcc—but not the PFC—predicts weight gain during childhood,
and PFC cellularity more strongly predicts weight gain during
adolescence when imbalances between reward and control cir-
cuitry are posited to occur (36). This hypothesis is supported by
the notion that we did not find strong evidence of RSI-based
cortical associations with waist circumference (SI Appendix, Fig.
S8). While we did not expect to observe differences in cortical
regions associated with cognitive control at this developmental
stage, future work will test for differences in both control- and
reward-related regions as this cohort ages into adolescence.
Several limitations of the current analysis warrant consider-

ation and provide additional avenues for future work. For ex-
ample, due to data collection constraints of the ABCD study, the
current analysis does not incorporate information regarding di-
etary intake. Given our hypothesis that a diet high in saturated fat
and sugar gives rise to increased neuroinflammation in the NAcc,
it is important for future work to explicitly test this hypothesis by
considering diet and dietary preferences. The directionality of this

Fig. 4. Voxelwise prediction of 1-y change in waist circumference. Relationship between restricted diffusion fraction and change in waist circumference
(accounting for covariates including baseline waist circumference) demonstrates spatial specificity of the ventral striatum.

Fig. 3. ROI prediction of 1-y change in waist circumference. Association
between RSI-based restricted component and change in waist circumference
(accounting for covariates including baseline waist circumference). Imaging
metrics were normalized to have unit SD. Error bars represent 95% CIs. As-
terisk denotes Bonferroni-corrected significance.

Rapuano et al. PNAS | October 27, 2020 | vol. 117 | no. 43 | 26981

N
EU

RO
SC

IE
N
CE

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
4,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2007918117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2007918117/-/DCSupplemental


www.manaraa.com

hypothesis will require further work to investigate the underpin-
nings of the causal relationship between diet, neuroinflammation,
and childhood weight gain.
Secondly, the use of waist circumference relative to other

anthropometric measurements warrants additional consider-
ation. The current study found a relationship between estimated
NAcc cellularity and waist circumference as well as BMI (SI
Appendix) in children; however, future work will be needed to
test the extent to which these relationships generalize across other
measures and over the course of development. Whereas waist
circumference has been suggested to more effectively measure
trunk fat than WHR in youth (20), WHR, but not waist circum-
ference, has been shown to predict mortality in older adults (85).
Thus, it is possible that neuroinflammation and associated health
risks differentially relate to body shape and fat distribution across
the life span.
Future work is needed to examine the role of puberty in the

relationship between brain microstructure and weight gain. The
current study accounted for pubertal stages measured by self-
report, similar to the Tanner scale (86, 87), and further dem-
onstrated sensitivity within uniform subsets of participants that
were prepubescent at baseline as well as at the 1-y follow-up (SI
Appendix, Tables S3 and S4). However, the validity of pubertal
self-assessment has previously been challenged (88, 89), partic-
ularly within overweight and obese children (90, 91), which may
limit the ability of the current analysis to sufficiently control for
pubertal stages.
Further, evidence suggests that childhood obesity may lead to

earlier puberty (92). Leptin, a hormone that regulates food in-
take, is produced by adipose tissue and has been shown to be
necessary for the onset of puberty (93). Likewise, puberty is as-
sociated with a transient increase in insulin resistance (94), which
may in turn alter dopaminergic functioning (95). An increase in
leptin, combined with a transient increase in insulin resistance
has been suggested to be responsible for the earlier onset of
puberty in children with higher body fat (96). In addition, leptin
plays a role in regulating inflammation in fat cells (97, 98), and
this process may be further modulated by dopamine expression
(99, 100). Given the complex interactions among dopamine, in-
flammation, and adipocyte-releasing hormones, future work will
be needed to disentangle the contributions of these signals on
neuroinflammation within dopaminergic pathways and their role
in unhealthy eating and weight gain in children.
We show increased cellularity in the NAcc—a region commonly

associated with reward and motivation—in children with greater
adiposity, and that this NAcc cellularity predicts weight gain in the
same children after 1 y. The current analysis points to the possi-
bility that diet-induced inflammation of the NAcc leads to further
unhealthy eating and ultimately weight gain in children. Although
many levels of analysis will be needed to unify potential mecha-
nisms underlying obesity and the developing brain, this work be-
gins to integrate findings observed in animal models of obesity
with those found in human neuroimaging studies. As an ongoing

longitudinal study, ABCD will provide an opportunity to investi-
gate causal relationships between brain microstructure and weight
gain during childhood and adolescence.

Methods
Data Source. The ABCD study is the largest longitudinal study to date ded-
icated to examining brain development and child health prospectively from
9 y to early adulthood. A large cohort of 9- and 10-y-old children was
recruited from 21 sites across the United States, with the goal of enrolling a
diverse sample of the US population in regard to race, ethnicity, and so-
cioeconomic status (101). Data are extensively collected using multimodal
assessments, including social, behavioral, health, and neuropsychological
measures—as well as structural and functional brain imaging—to better
understand how social and environmental influences affect brain develop-
ment, health, emergence of risky behaviors and psychiatric/neurological dis-
orders, and overall life-outcomes trajectory (102). Analyses were conducted on
data from the ABCD study 2.0.1 release, which includes baseline data from
11,875 participants and 4,951 participants at a 1-y follow-up (103). Partici-
pating study site institutional review boards approved all study procedures.
Parents provided written consent, and children provided verbal assent.

Design and Sample. ABCD study recruitment, sample selection, assessments,
study design, and data collection are detailed elsewhere (104). Exclusion criteria
for the ABCD study included moderate to severe intellectual disability, current
substance use disorder, noncorrectable vision, hearing, or sensorimotor impair-
ments, major neurological disorders, gestational age less than 28 wk, birth
weight less than 1.2 kg, birth complications requiring more than a 1-mo hos-
pitalization, history of traumatic brain injury, and standard MRI contraindica-
tions (e.g., implanted metals, claustrophobia, orthodonture) (104). The current
analysis additionally excluded participants with a history of schizophrenia, at-
tention-deficit/hyperactivity disorder (ADHD), autism, neurological disorders
(e.g., cerebral palsy, seizures), concussion, diabetes, lead poisoning, muscular
dystrophy, multiple sclerosis, or substance abuse. For maximum data consistency,
only subjects whose data were acquired usingMRI scanners from a single vendor
(Siemens Healthineers AG, Erlangen, Germany) were included in our analysis.

Waist circumference was measured by placing a tape measure along the
highest point of the pelvic bone. Measurements were collected twice (rounded
to the nearest 0.1 inch) and subsequently averaged. Child pubertal status was
assessed by self- and parent-report of physical development, yielding a cate-
gorical maturation score similar to that of Tanner staging (105).

Image Acquisition. Diffusion images were acquired using a spin echo echo-
planar imaging (EPI) acquisition with echo time (TE)/repetition time (TR) =
88/4,100 ms, multiband acceleration factor of 3, phase partial Fourier factor
of 0.75, matrix size of 140 × 140, 81 slices, and an axial acquisition with 1.7-mm
isotropic resolution. Diffusion weighted data were acquired with six
directions at b = 500 s/mm2, 15 directions at b = 1,000 s/mm2, 15 directions at
b = 2,000 s/mm2, and 60 directions at b = 3,000 s/mm2. The full ABCD imaging
protocol is described in detail elsewhere (39).

Image Preprocessing. RSI metrics were calculated for subcortical gray matter
structures using a linear estimation approach (37, 106, 107). The complete
MRI processing pipeline is described in further detail elsewhere (39, 107).

RSI Analyses. All statistical analyses were performed in R Version 3.6.1 (108).
Linear mixed effects models (109) were used to evaluate the associations
between RSI measures and waist circumference at baseline as well as change
in waist circumference at 1-y follow-up. RSI models were generated for each

Fig. 5. Proposed mechanism of diet-induced weight gain mediated by NAcc neuroinflammation. The consumption of a high-calorie diet may perpetuate un-
healthy eating and subsequent weight gain by promoting inflammatory signaling and corresponding glial proliferation in the NAcc (cf. ref. 68). In this framework,
dopaminergic sensitivity early in life may increase susceptibility to unhealthy eating, thereby initiating a cycle of neuroinflammation and continued consumption.
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anatomically defined ROI, including the subcortex. For all models, covariates
included fixed effects for sex, interview age, puberty development scale,
race/ethnicity, parental education, household income, parents’ marital sta-
tus, and intracranial volume. In addition, the MRI scanner unique identifier
and family structure were modeled as nested random effects. The model
assessing change in waist circumference was evaluated with and without
baseline measurements as a fixed effect covariate in order to isolate unique
variance independent of baseline measurements. Significance was assessed
using an alpha of 0.05 after Bonferroni correction for multiple comparisons.
All effects were consistent bilaterally, and thus RSI measures were averaged
between hemispheres for ease of reporting.

In addition to the ROI analyses, a post hoc analysis of voxelwise data was
conducted to further evaluate the spatial specificity of our findings. The same
model used for the ROI analyses was applied to every voxel contained within
the same subcortical mask (R Version 3.6.1) (108). Relationships with RSI
measures were tested for baseline waist circumference as well as for 1-y
change in waist circumference.

Subcortical RSI estimates were also compared to BMI at baseline and at 1-y
follow-up given the ubiquity of this measure in the literature. These analyses
were performed using identical predictors and covariates as in the models
evaluating waist circumference. To demonstrate consistency across related
measures, relationships with BMI percentile (adjusted for age and sex) and
BMI z-scores were also assessed. The 2000 CDC growth charts were used to
compute adjusted measurements in SAS (110).

Code Availability. All code for data extraction and analysis used in this study
will be made available for download from https://github.com/ABCD-STUDY.

Data Availability. ABCD data are publicly available through the National
Institute of Mental Health Data Archive (https://nda.nih.gov/abcd). The ABCD
data used in this report came from the ABCD Data Release 2.0 (DOI:
10.15154/1503209, March 2019) and ABCD Fix Release 2.0.1 (DOI: 10.15154/
1504041, July 2019).

ACKNOWLEDGMENTS. Data used in the preparation of this article were
obtained from the ABCD study (https://abcdstudy.org), held in the National
Institute of Mental Health (NIMH) Data Archive (NDA). This is a multisite,
longitudinal study designed to recruit more than 10,000 children age 9 to 10
and follow them over 10 y into early adulthood. The ABCD Study is sup-
ported by the NIH and additional federal partners under award numbers
U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018,
U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117,
U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156,
U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093,
U01DA041089, U24DA041123, and U24DA041147. A full list of supporters is
available at https://abcdstudy.org/federal-partners.html. A listing of participat-
ing sites and a complete listing of the study investigators can be found at
https://abcdstudy.org/consortium_members/. ABCD consortium investigators
designed and implemented the study and/or provided data but did not nec-
essarily participate in analysis or writing of this report. This manuscript reflects
the views of the authors and may not reflect the opinions or views of the NIH
or ABCD consortium investigators. The ABCD data repository grows and
changes over time. The ABCD data used in this report came from NIMH Data
Archive Digital Object Identifier 10.15154/1504041. DOIs can be found at
https://nda.nih.gov/study.html?id=721. This work was supported in part by
U01 DA041174 (to B.J.C.) and U24 DA041123 (to D.J.H., S.N.H., W.K.T., and
A.M.D.). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

1. World Health Organization, Obesity and overweight. https://www.who.int/news-

room/fact-sheets/detail/obesity-and-overweight. Accessed 24 September 2020.
2. C. D. Fryar, M. D. Carroll, C. L. Ogden, “Prevalence of overweight, obesity, and severe

obesity among children and adolescents aged 2–19 years: United States, 1963–1965

through 2015–2016” (National Center for Health Statistics Health E-Stat, 2018).
3. J. Wardle, L. Cooke, The impact of obesity on psychological well-being. Best Pract.

Res. Clin. Endocrinol. Metab. 19, 421–440 (2005).
4. R. M. Puhl, J. D. Latner, Stigma, obesity, and the health of the nation’s children.

Psychol. Bull. 133, 557–580 (2007).
5. J. J. Puder, S. Munsch, Psychological correlates of childhood obesity. Int. J. Obes. 34

(suppl. 2), S37–S43 (2010).
6. A. T. Cote, K. C. Harris, C. Panagiotopoulos, G. G. S. Sandor, A. M. Devlin, Childhood

obesity and cardiovascular dysfunction. J. Am. Coll. Cardiol. 62, 1309–1319 (2013).
7. L. J. Lloyd, S. C. Langley-Evans, S. McMullen, Childhood obesity and risk of the adult

metabolic syndrome: A systematic review. Int. J. Obes. 36, 1–11 (2012).
8. F. Bacha, S. S. Gidding, Cardiac abnormalities in youth with obesity and type 2 dia-

betes. Curr. Diab. Rep. 16, 62 (2016).
9. M. Simmonds, A. Llewellyn, C. G. Owen, N. Woolacott, Predicting adult obesity from

childhood obesity: A systematic review and meta-analysis. Obes. Rev. 17, 95–107 (2016).
10. J. J. Reilly, J. Kelly, Long-term impact of overweight and obesity in childhood and

adolescence on morbidity and premature mortality in adulthood: Systematic review.

Int. J. Obes. 35, 891–898 (2011).
11. W. H. Dietz, M. C. Bellizzi, Introduction: The use of body mass index to assess obesity

in children. Am. J. Clin. Nutr. 70, 123S–125S (1999).
12. R. J. Kuczmarski et al., 2000 CDC Growth Charts for the United States: Methods and

development. Vital Health Stat. 11, 1–190 (2002).
13. D. S. Freedman, B. Sherry, The validity of BMI as an indicator of body fatness and risk

among children. Pediatrics 124 (suppl. 1), S23–S34 (2009).
14. A. Must, S. E. Anderson, Body mass index in children and adolescents: Considerations

for population-based applications. Int. J. Obes. 30, 590–594 (2006).
15. J. J. Reilly, Assessment of obesity in children and adolescents: Synthesis of recent

systematic reviews and clinical guidelines. J. Hum. Nutr. Diet. 23, 205–211 (2010).
16. D. S. Freedman et al., BMI z-Scores are a poor indicator of adiposity among 2- to

19-year-olds with very high BMIs, NHANES 1999-2000 to 2013-2014. Obesity 25,

739–746 (2017).
17. World Health Organization,Obesity: Preventing and Managing the Global Epidemic,

(World Health Organization, 2000).
18. National Institutes of Health, Clinical Guidelines on the Identification, Evaluation,

and Treatment of Overweight and Obesity in Adults: The Evidence Report (National

Heart, Lung, and Blood Institute, Bethesda, 1998), NIH Publication No. 98–4083.

Available at https://www.nhlbi.nih.gov/health-pro/guidelines/archive/clinical-guide-

lines-obesity-adults-evidence-report. Accessed 1 March 2020.
19. P. Brambilla, G. Bedogni, M. Heo, A. Pietrobelli, Waist circumference-to-height ratio

predicts adiposity better than body mass index in children and adolescents. Int.

J. Obes. 37, 943–946 (2013).
20. R. W. Taylor, I. E. Jones, S. M. Williams, A. Goulding, Evaluation of waist circum-

ference, waist-to-hip ratio, and the conicity index as screening tools for high trunk

fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3-19 y.

Am. J. Clin. Nutr. 72, 490–495 (2000).
21. C. Maffeis, A. Grezzani, A. Pietrobelli, S. Provera, L. Tatò, Does waist circumference

predict fat gain in children? Int. J. Obes. Relat. Metab. Disord. 25, 978–983 (2001).
22. S. Genovesi et al., Usefulness of waist circumference for the identification of child-

hood hypertension. J. Hypertens. 26, 1563–1570 (2008).
23. S. C. Savva et al., Waist circumference and waist-to-height ratio are better predictors

of cardiovascular disease risk factors in children than body mass index. Int. J. Obes.

Relat. Metab. Disord. 24, 1453–1458 (2000).
24. K. Karatzi et al.; Healthy Growth Study group, Cutoff points of waist circumference

and trunk and visceral fat for identifying children with elevated inflammation

markers and adipokines: The Healthy Growth Study. Nutrition 32, 1063–1067 (2016).
25. H. D. McCarthy, Body fat measurements in children as predictors for the metabolic

syndrome: Focus on waist circumference. Proc. Nutr. Soc. 65, 385–392 (2006).
26. N. D. Volkow, G.-J. Wang, D. Tomasi, R. D. Baler, Obesity and addiction: Neurobio-

logical overlaps. Obes. Rev. 14, 2–18 (2013).
27. R. Pandit, J. W. de Jong, L. J. M. J. Vanderschuren, R. A. H. Adan, Neurobiology of

overeating and obesity: The role of melanocortins and beyond. Eur. J. Pharmacol.

660, 28–42 (2011).
28. H.-R. Berthoud, C. Morrison, The brain, appetite, and obesity. Annu. Rev. Psychol. 59,

55–92 (2008).
29. N. S. Lawrence, E. C. Hinton, J. A. Parkinson, A. D. Lawrence, Nucleus accumbens

response to food cues predicts subsequent snack consumption in women and increased

body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).
30. K. E. Demos, T. F. Heatherton, W. M. Kelley, Individual differences in nucleus ac-

cumbens activity to food and sexual images predict weight gain and sexual behavior.

J. Neurosci. 32, 5549–5552 (2012).
31. R. B. Lopez, W. Hofmann, D. D. Wagner, W. M. Kelley, T. F. Heatherton, Neural

predictors of giving in to temptation in daily life. Psychol. Sci. 25, 1337–1344 (2014).
32. E. Green, A. Jacobson, L. Haase, C. Murphy, Reduced nucleus accumbens and caudate

nucleus activation to a pleasant taste is associated with obesity in older adults. Brain

Res. 1386, 109–117 (2011).
33. K. M. Rapuano et al., Genetic risk for obesity predicts nucleus accumbens size and

responsivity to real-world food cues. Proc. Natl. Acad. Sci. U.S.A. 114, 160–165 (2017).
34. A. S. Bruce et al., Obese children show hyperactivation to food pictures in brain networks

linked to motivation, reward and cognitive control. Int. J. Obes. 34, 1494–1500 (2010).
35. B. J. Casey, A. Galván, L. H. Somerville, Beyond simple models of adolescence to an in-

tegrated circuit-based account: A commentary. Dev. Cogn. Neurosci. 17, 128–130 (2016).
36. B. J. Casey, Beyond simple models of self-control to circuit-based accounts of ado-

lescent behavior. Annu. Rev. Psychol. 66, 295–319 (2015).
37. N. S. White et al., Improved conspicuity and delineation of high-grade primary and

metastatic brain tumors using “restriction spectrum imaging”: Quantitative com-

parison with high B-value DWI and ADC. AJNR Am. J. Neuroradiol. 34, 958–964, S1

(2013).
38. N. S. White, T. B. Leergaard, H. D’Arceuil, J. G. Bjaalie, A. M. Dale, Probing tissue

microstructure with restriction spectrum imaging: Histological and theoretical vali-

dation. Hum. Brain Mapp. 34, 327–346 (2013).

Rapuano et al. PNAS | October 27, 2020 | vol. 117 | no. 43 | 26983

N
EU

RO
SC

IE
N
CE

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
4,

 2
02

1 

https://github.com/ABCD-STUDY
https://nda.nih.gov/abcd
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1504041
http://dx.doi.org/10.15154/1504041
https://abcdstudy.org/
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/consortium_members/
https://nda.nih.gov/study.html?id=721
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.nhlbi.nih.gov/health-pro/guidelines/archive/clinical-guidelines-obesity-adults-evidence-report
https://www.nhlbi.nih.gov/health-pro/guidelines/archive/clinical-guidelines-obesity-adults-evidence-report


www.manaraa.com

39. B. J. Casey et al.; ABCD Imaging Acquisition Workgroup, The Adolescent Brain
Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn.
Neurosci. 32, 43–54 (2018).

40. G. J. Wang et al., Brain dopamine and obesity. Lancet 357, 354–357 (2001).
41. K. Blum et al., The D2 dopamine receptor gene as a determinant of reward defi-

ciency syndrome. J. R. Soc. Med. 89, 396–400 (1996).
42. J. W. Cordeira, L. Frank, M. Sena-Esteves, E. N. Pothos, M. Rios, Brain-derived neu-

rotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine
system. J. Neurosci. 30, 2533–2541 (2010).

43. C. Hryhorczuk et al., Dampened mesolimbic dopamine function and signaling by
saturated but not monounsaturated dietary lipids. Neuropsychopharmacology 41,
811–821 (2016).

44. N. D. Volkow et al., Brain dopamine is associated with eating behaviors in humans.
Int. J. Eat. Disord. 33, 136–142 (2003).

45. T. E. Robinson, K. C. Berridge, The neural basis of drug craving: An incentive-
sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).

46. K. C. Berridge, T. E. Robinson, Liking, wanting, and the incentive-sensitization theory
of addiction. Am. Psychol. 71, 670–679 (2016).

47. K. C. Berridge, M. L. Kringelbach, Pleasure systems in the brain. Neuron 86, 646–664 (2015).
48. K. C. Berridge, T. E. Robinson, Parsing reward. Trends Neurosci. 26, 507–513 (2003).
49. B. G. Hoebel, Brain neurotransmitters in food and drug reward. Am. J. Clin. Nutr. 42,

1133–1150 (1985).
50. S. Fulton et al., Leptin regulation of the mesoaccumbens dopamine pathway. Neu-

ron 51, 811–822 (2006).
51. I. S. Farooqi et al., Leptin regulates striatal regions and human eating behavior.

Science 317, 1355 (2007).
52. D. M. Small, M. Jones-Gotman, A. Dagher, Feeding-induced dopamine release in

dorsal striatum correlates with meal pleasantness ratings in healthy human volun-
teers. Neuroimage 19, 1709–1715 (2003).

53. W. K. Simmons et al., The ventral pallidum and orbitofrontal cortex support food
pleasantness inferences. Brain Struct. Funct. 219, 473–483 (2014).

54. K. S. Smith, K. C. Berridge, The ventral pallidum and hedonic reward: Neurochemical
maps of sucrose “liking” and food intake. J. Neurosci. 25, 8637–8649 (2005).

55. P. J. Morgane, Alterations in feeding and drinking behavior of rats with lesions in
globi pallidi. Am. J. Physiol. 201, 420–428 (1961).

56. K. S. Smith, A. J. Tindell, J. W. Aldridge, K. C. Berridge, Ventral pallidum roles in
reward and motivation. Behav. Brain Res. 196, 155–167 (2009).

57. C.-Y. Ho, K. C. Berridge, An orexin hotspot in ventral pallidum amplifies hedonic
“liking” for sweetness. Neuropsychopharmacology 38, 1655–1664 (2013).

58. D. C. Castro, S. L. Cole, K. C. Berridge, Lateral hypothalamus, nucleus accumbens, and
ventral pallidum roles in eating and hunger: Interactions between homeostatic and
reward circuitry. Front. Syst. Neurosci. 9, 90 (2015).

59. A. J. Tindell, K. S. Smith, S. Peciña, K. C. Berridge, J. W. Aldridge, Ventral pallidum
firing codes hedonic reward: When a bad taste turns good. J. Neurophysiol. 96,
2399–2409 (2006).

60. M. Valdearcos et al., Microglia dictate the impact of saturated fat consumption on
hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124–2138 (2014).

61. J. P. Thaler et al., Obesity is associated with hypothalamic injury in rodents and
humans. J. Clin. Invest. 122, 153–162 (2012).

62. C. T. De Souza et al., Consumption of a fat-rich diet activates a proinflammatory
response and induces insulin resistance in the hypothalamus. Endocrinology 146,
4192–4199 (2005).

63. X. Zhang et al., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to
energy imbalance and obesity. Cell 135, 61–73 (2008).

64. K. A. Posey et al., Hypothalamic proinflammatory lipid accumulation, inflammation,
and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab.
296, E1003–E1012 (2009).

65. H. Hsuchou et al., Obesity induces functional astrocytic leptin receptors in hypo-
thalamus. Brain 132, 889–902 (2009).

66. J. G. Kim et al., Leptin signaling in astrocytes regulates hypothalamic neuronal cir-
cuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

67. J. Molina et al., Reduced astrocytic expression of GFAP in the offspring of female rats
that received hypercaloric diet. Nutr. Neurosci. 23, 411–421 (2020).

68. T. B. Ogassawara et al., Food deprivation in F0 generation and hypercaloric diet in F1
generation reduce F2 generation astrogliosis in several brain areas after immune
challenge. Int. J. Dev. Neurosci. 64, 29–37 (2018).

69. L. Décarie-Spain et al., Nucleus accumbens inflammation mediates anxiodepressive
behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol.
Metab. 10, 1–13 (2018).

70. B. Pulli, J. W. Chen, Imaging neuroinflammation–From bench to bedside. J. Clin. Cell.
Immunol. 5, 226 (2014).

71. D. S. Albrecht, C. Granziera, J. M. Hooker, M. L. Loggia, In vivo imaging of human
neuroinflammation. ACS Chem. Neurosci. 7, 470–483 (2016).

72. A. H. Jacobs, B. Tavitian; INMiND consortium, Noninvasive molecular imaging of
neuroinflammation. J. Cereb. Blood Flow Metab. 32, 1393–1415 (2012).

73. L. Capuron et al., Dopaminergic mechanisms of reduced basal ganglia responses to
hedonic reward during interferon alfa administration. Arch. Gen. Psychiatry 69,
1044–1053 (2012).

74. L. Capuron et al., Basal ganglia hypermetabolism and symptoms of fatigue during
interferon-alpha therapy. Neuropsychopharmacology 32, 2384–2392 (2007).

75. N. I. Eisenberger et al., Inflammation-induced anhedonia: Endotoxin reduces ventral

striatum responses to reward. Biol. Psychiatry 68, 748–754 (2010).
76. L. P. Spear, The adolescent brain and age-related behavioral manifestations. Neu-

rosci. Biobehav. Rev. 24, 417–463 (2000).
77. L. P. Spear, “Neurodevelopment during adolescence” in Neurodevelopmental

Mechanisms in Psychopathology, D. Cicchetti, Ed. (Cambridge University Press, 2003),

p. xii, pp. 62–83.
78. A. Galvan et al., Earlier development of the accumbens relative to orbitofrontal cortex

might underlie risk-taking behavior in adolescents. J. Neurosci. 26, 6885–6892 (2006).
79. W. H. Dietz, Critical periods in childhood for the development of obesity. Am. J. Clin.

Nutr. 59, 955–959 (1994).
80. J. N. Giedd, J. L. Rapoport, Structural MRI of pediatric brain development: What have

we learned and where are we going? Neuron 67, 728–734 (2010).
81. J. Thompson et al., D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: Re-

duced dopamine D2 receptor binding in the human striatum associated with the A1

allele. Pharmacogenetics 7, 479–484 (1997).
82. K. S. Burger, E. Stice, Variability in reward responsivity and obesity: Evidence from

brain imaging studies. Curr. Drug Abuse Rev. 4, 182–189 (2011).
83. E. Stice, K. Burger, Neural vulnerability factors for obesity. Clin. Psychol. Rev. 68,

38–53 (2019).
84. E. Stice, S. Spoor, C. Bohon, D. M. Small, Relation between obesity and blunted

striatal response to food is moderated by TaqIA A1 allele. Science 322, 449–452 (2008).
85. P. Srikanthan, T. E. Seeman, A. S. Karlamangla, Waist-hip-ratio as a predictor of all-

cause mortality in high-functioning older adults. Ann. Epidemiol. 19, 724–731 (2009).
86. W. A. Marshall, J. M. Tanner, Variations in pattern of pubertal changes in girls. Arch.

Dis. Child. 44, 291–303 (1969).
87. W. A. Marshall, J. M. Tanner, Variations in the pattern of pubertal changes in boys.

Arch. Dis. Child. 45, 13–23 (1970).
88. J.-C. Desmangles, J. M. Lappe, G. Lipaczewski, G. Haynatzki, Accuracy of pubertal

Tanner staging self-reporting. J. Pediatr. Endocrinol. Metab. 19, 213–221 (2006).
89. J. Brooks-Gunn, M. P. Warren, J. Rosso, J. Gargiulo, Validity of self-report measures

of girls’ pubertal status. Child Dev. 58, 829–841 (1987).
90. K. Lee, B. Valeria, C. Kochman, C. M. Lenders, Self-assessment of height, weight, and

sexual maturation: Validity in overweight children and adolescents. J. Adolesc.

Health 39, 346–352 (2006).
91. S. Bonat, A. Pathomvanich, M. F. Keil, A. E. Field, J. A. Yanovski, Self-assessment of

pubertal stage in overweight children. Pediatrics 110, 743–747 (2002).
92. S. E. Anderson, G. E. Dallal, A. Must, Relative weight and race influence average age

at menarche: Results from two nationally representative surveys of US girls studied

25 years apart. Pediatrics 111, 844–850 (2003).
93. P. B. Kaplowitz, Link between body fat and the timing of puberty. Pediatrics 121

(suppl. 3), S208–S217 (2008).
94. M. I. Goran, B. A. Gower, Longitudinal study on pubertal insulin resistance. Diabetes

50, 2444–2450 (2001).
95. A. Kleinridders et al., Insulin resistance in brain alters dopamine turnover and causes

behavioral disorders. Proc. Natl. Acad. Sci. U.S.A. 112, 3463–3468 (2015).
96. C. B. Jasik, R. H. Lustig, Adolescent obesity and puberty: The “perfect storm”. Ann.

N. Y. Acad. Sci. 1135, 265–279 (2008).
97. G. Fantuzzi, R. Faggioni, Leptin in the regulation of immunity, inflammation, and

hematopoiesis. J. Leukoc. Biol. 68, 437–446 (2000).
98. A. Aguilar-Valles, W. Inoue, C. Rummel, G. N. Luheshi, Obesity, adipokines and

neuroinflammation. Neuropharmacology 96, 124–134 (2015).
99. X. Wang, V. A. Villar, A. Tiu, K. K. Upadhyay, S. Cuevas, Dopamine D2 receptor

upregulates leptin and IL-6 in adipocytes. J. Lipid Res. 59, 607–614 (2018).
100. D. C. Borcherding et al., Dopamine receptors in human adipocytes: Expression and

functions. PLoS One 6, e25537 (2011).
101. W. M. Compton, G. J. Dowling, H. Garavan, Ensuring the best use of data: The ad-

olescent brain cognitive development study. JAMA Pediatr., 10.1001/jamapedi-

atrics.2019.2081 (2019).
102. T. L. Jernigan, S. A. Brown; ABCD Consortium Coordinators, Introduction. Dev. Cogn.

Neurosci. 32, 1–3 (2018).
103. R. A. Carper, J. M. Treiber, N. S. White, J. S. Kohli, R.-A. Müller, Restriction spectrum

imaging as a potential measure of cortical neurite density in autism. Front. Neurosci.

10, 610 (2017).
104. H. Garavan et al., Recruiting the ABCD sample: Design considerations and proce-

dures. Dev. Cogn. Neurosci. 32, 16–22 (2018).
105. M. A. Carskadon, C. Acebo, A self-administered rating scale for pubertal develop-

ment. J. Adolesc. Health 14, 190–195 (1993).
106. R. Q. Loi et al., Restriction spectrum imaging reveals decreased neurite density in

patients with temporal lobe epilepsy. Epilepsia 57, 1897–1906 (2016).
107. D. J. Hagler et al., Image processing and analysis methods for the Adolescent Brain

Cognitive Development Study. Neuroimage 202, 116091 (2019).
108. R Core Team, R: A Language and Environment for Statistical Computing (R Foun-

dation for Statistical Computing, Vienna, 2013). https://www.r-project.org/.
109. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using

lme4. J. Stat. Softw. 67, 1–48 (2015).
110. Centers for Disease Control and Prevention, A SAS Program for the 2000 CDC

Growth Charts (Ages 0 to <20 years) (2016) https://www.cdc.gov/nccdphp/dnpao/

growthcharts/resources/sas.htm. (Accessed 1 September 2018).

26984 | www.pnas.org/cgi/doi/10.1073/pnas.2007918117 Rapuano et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
4,

 2
02

1 

https://www.r-project.org/
https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm
https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm
https://www.pnas.org/cgi/doi/10.1073/pnas.2007918117

